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Abstract
The presence of motion artifacts in photoplethysmographic (PPG) signals 
is one of the major obstacles in the extraction of reliable cardiovascular 
parameters in continuous monitoring applications. In the current paper we 
present an algorithm for motion artifact detection based on the analysis of the 
variations in the time and the period domain characteristics of the PPG signal. 
The extracted features are ranked using a normalized mutual information 
feature selection algorithm and the best features are used in a support vector 
machine classification model to distinguish between clean and corrupted 
sections of the PPG signal. The proposed method has been tested in healthy and 
cardiovascular diseased volunteers, considering 11 different motion artifact 
sources. The results achieved by the current algorithm (sensitivity—SE:  
84.3%, specificity—SP: 91.5% and accuracy—ACC: 88.5%) show that 
the current methodology is able to identify both corrupted and clean PPG 
sections with high accuracy in both healthy (ACC: 87.5%) and cardiovascular 
diseases (ACC: 89.5%) context.

Keywords: photoplethysmography, motion artifacts; period domain analysis, 
time domain analysis, feature extraction, feature selection, support vector 
machine
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1. Introduction

Photoplethysmography (PPG) is a non-invasive, low cost tool to continuously monitor blood 
volume changes in tissue as a function of time. One of the major advances of the PPG-based 
technology in clinical environments is the pulse oximeter, which has been accepted by the 
International Standards Organization (ISO) and the European Committee for Standardization 
as the standard non-invasive measure of oxygen saturation level since 1987 (Shang et al 2007). 
Motivated by unmet needs in low cost, unobtrusive and portable techniques in personal-Health 
(p-Health), the PPG technique has been object of extensive research in the later decades. Due 
to technological advances in the field of opto-electronics, clinical instrumentation and digital 
signal processing, the PPG technique achieved a broader spectrum of potential applications, 
ranging from the field of clinical physiological monitoring to the vascular assessment, and 
autonomic function evaluation (Allen 2007). Moreover, this technique has been widely applied 
in many clinical areas such as anesthesia, surgical recovery and critical care (Allen 2007).

However, the quality of the PPG signals can be easily influenced by properties of the light-
emitting diode and photodetector, as well as the pressure exerted on the PPG probe, which may 
affect the morphology of the PPG waveform (Reisner et al 2008). Moreover, the ambient light 
at the photodetector, poor blood perfusion of the peripheral tissues and motion artifacts (Sukor 
et al 2011) are also common sources of errors. In uncontrolled environments such as home care 
settings, these potential error sources are more frequent and can become a serious obstacle to 
the reliable use of PPG derived parameters, especially in continuous monitoring applications. 
Therefore, it is important to provide signal quality or trust metric that provides the subsequent 
analysis algorithms with a level of trust in the derived parameters, which reduces the false 
alarms, allows identifying inaccurate readings and finally increases patient safety.

Although the recent technological advances allowed the minimization of some of these 
limitations, motion artifact detection and suppression is still a major challenge (Allen 2007, 
Sukor et al 2011) in particular without using additional sensors. Indeed, the field of motion 
artifact and noise suppression has been subject of intensive research in the last decade. Various 
approaches have been investigated, where the clean PPG signal is recovered or reconstructed 
from the corrupted one. A common approach in this field is to use adaptive filtering techniques 
(Graybeal and Petterson 2004, Lee et al 2004, Foo and Wilson 2006, Kunchon et al 2009) to 
reduce noise and motion artifacts. In these approaches, an adaptive filter (e.g. Least Mean 
Square adaptive filter) is applied as a joint process estimator to cancel noise and motion arti-
facts and consequently retrieve a clean PPG signal. However, some studies indicate that these 
techniques introduce phase shifts in the PPG signal, which may compromise its subsequent 
interpretation (Foo 2006). Additionally, similar findings have been shown for wavelet based 
transformation techniques.

Another common approach is to use accelerometers as a reference noise signal to cancel 
out motion artifacts in PPG signals (Gibbs and Asada 2005, Han et al 2007, Kim et al 2007, 
Wood and Asada 2007). However, these methods present major drawbacks. Here, an accel-
erometer needs to be coupled to the PPG sensor in order to retrieve the noise reference and 
synchronisation of both signals, which makes this approach hardly suitable for current equip-
ment in clinical settings. Additionally, there is not a direct correlation between movements 
(acceleration data) and motion artifacts in PPG (Yousefi et al 2012).

Other authors opted to use time-frequency analysis (Lee and Zhang 2003, Yan et al 2005, 
Reddy et al 2008, Raghuram et al 2012) and source separation techniques (Kim and Yoo 
2006) to recover the clean PPG signal. Reddy et al (Reddy and Kumar 2007) proposed a 
motion artifact reduction method based on singular value decomposition. Later in (Reddy 
et al 2008), the same author applied a beat-by-beat Fourier series analysis to reconstruct a 
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clean PPG signal. Yan et al (2005) applied a smoothed pseudo Wigner–Ville distribution for 
reduction of motion artifacts. Raghuram et al (2012) proposed the use of an empirical mode 
decomposition technique combined with the Hilbert–Huang transform to reconstruct clean 
PPG section from the corrupted PPG signal. Kim et al (Kim and Yoo 2006) proposed the com-
bination of a block interleaving and low pass filtering technique approach with an Independent 
Component Analysis technique to separate the PPG from motion artifacts. These techniques 
assume that underlying a corrupted PPG signal there is a clean/uncorrupted reference capable 
of being retrieved, which is not often possible. Additionally, the distortion induced by the 
reconstruction of a clean PPG signal can significantly bias the extracted measurements (e.g. 
left ventricular ejection time—LVET) and induce subsequent wrong diagnosis.

In many applications (hospital as well as home monitoring), an alternative to noise reduc-
tion is the robust detection of PPG signal sections corrupted by noise and motion artifacts 
and exclude them from the subsequent analysis. Techniques such as morphological analysis 
(Sukor et al 2011) and higher-order statistical analysis (Krishnan et al 2008) have been pro-
posed in this research field. Sukor et al (2011) proposed an algorithm based on the analysis of 
several morphological characteristics of the PPG pulses to distinguish bad quality pulses from 
good ones. The author reports that the proposed methodology is able to identify motion arti-
facts with an accuracy of 83%. Krishnan et al (2008) used a sensor fusion approach combining 
high order statistical features from the time and frequency domain to discriminate corrupted 
PPG sections. The proposed methodology was able to detect motion artifacts with a probabil-
ity of 91% and a false alarm probability of 0.06%.

Despite the good results presented in (Sukor et al 2011), we believe that motion artifact 
detection performance can still be increased. It is our goal not only to evaluate the changes in 
the morphological characteristics of the PPG signal, but also to utilize the idea that clean and 
corrupted PPG sections have different period characteristics. It is still unknown which time/
period characteristics best distinguish clean and corrupted PPG sections and it is expected 
that these characteristics depend on the target population in clinical practice. Therefore, a 
study regarding the evaluation of the best features in the time and period domain for artifact 
discrimination and their application in both healthy and cardiovascular diseased (CVD) popu-
lations has yet to be developed.

In this paper, we present a motion artifact detection methodology, which is based only on 
the analysis of the time and period domain characteristics of the PPG signal from 8 healthy 
volunteers and 7 CVD patients. In the time domain analysis we evaluate the changes in the 
main morphological characteristics of the PPG beats. In the period domain analysis, the 
period characteristics of the PPG signal are assessed and compared using a sliding window 
approach. Several features are extracted, and the Normalized Mutual Information Feature 
Selection (NMIFS) algorithm (Estevez et al 2009) is used to select the most relevant and 
least redundant ones. The most discriminative features are used as inputs to a Support Vector 
Machine (SVM) classification model.

The paper is organized as follows: the proposed methodology is introduced in section 2. 
The results and respective discussion are presented in section 3. Finally, the conclusions are 
summarized in section 4.

2. Methods

The proposed methodology for the detection of motion artifacts consists of the following 
stages (see figure 1): (a) pre-processing and baseline removal; (b) segmentation; (c) feature 
extraction; (d) feature selection and (e) classification.
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2.1. Pre-processing

The goal of the pre-processing stage is to remove the frequency components that do not rep-
resent the fundamental features of the PPG signal. Based on the algorithm proposed in (Chan 
et al 2007), the high frequency components which are not physiologically related to the PPG 
waveform were removed using a low-pass Butterworth filter with a 18 Hz cut-off frequency 
and a 2 s window moving average filter is applied to derive an approximation of the PPG sig-
nal baseline, which is subtracted from the original PPG signal.

2.2. Segmentation

The morphology of the PPG pulse is a result of a complex interaction between the left ventricle 
and the systemic circulation. It is composed of an early main pulse created by the ventricular 
contraction and various additional pulses caused by pressure pulse reflections in the cen-
tral arterial tree to the peripheral vasculature. As the main pulse (P1—illustrated in figure 2) 
arrives at the first reflection site, which is, the junction between the thoracic and abdominal 
aorta, there is a significant decrease in the artery diameter along with the change in its elastic-
ity causing the main pulse to be reflected. The main pulse continues to travel downwards and 
reaches the second reflection site, which arises from the juncture between abdominal aorta 
and common iliac arteries (Baruch et al 2011). These reflection sites are commonly known as 
the renal and iliac reflections sites and give rise to the second (commonly known as second 
systolic peak) and third reflection waves (P2 and P3, respectively—illustrated in figure 2). 
Additionally, there are also other minor reflections and re-reflections in the systemic structure 
that give rise to smaller reflection waves.

Commonly, in healthy individuals, these reflection waves occur during early diastole and 
a dicrotic notch can be observed between the first and second PPG peaks. Contrarily, in elder 
individuals and/or individuals with cardiovascular diseases, the vascular properties may lead 
to a significant increase of the pulse wave velocity up to a factor of three (e.g. due to arterial 
stiffening), leading to the occurrence of the reflected waves during late systole and preventing 
the distinction between direct and reflected waves.

The main objective of the segmentation step is to detect the characteristic points corre-
spondent to the onset and offset of the PPG pulses and allowing the posterior extraction of 

Figure 1. Scheme of the proposed motion artifacts’ detection methodology.
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their morphological characteristics. We determine the characteristic points by analyzing the 
derivatives of the PPG signal. The physiological basis of this approach was firstly reported 
(Cook 2001, Wisely and Cook 2001) where Cook observed the similarity between the arte-
rial flow waveform and the first derivative of the PPG waveform. Therefore, the point in time 
where the PPG first derivative is the steepest corresponds to the onset of the pulse, which can 
be determined as a maximum in the PPG third derivative.

To detect these characteristic points, the PPG signal is firstly differentiated using a five-
point digital differentiator (Abramowitz and Stegun 2012) (equations (1)–(3)), resulting in 
first to third order derivatives (d1_ppg, d2_ppg and d3_ppg).

 
= ′ = − − − + + − +

d ppg f t
f t h f t h f t h f t h

h
1_ ( )

( 2 ) 8 ( ) 8 ( ) ( 2 )

12 2 (1)
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12 2
(2)

 
= ′′′ = − − + − − + + +
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f t h f t h f t h f t h

h
3_ ( )

( 2 ) 2 ( ) 2 ( ) ( 2 )

2 3 (3)

where f is the PPG time series, t is the time index and h is the sampling time.
The 1st derivative local maxima (d1_ppg_lmax) with absolute amplitude greater than a 

threshold ThR are detected, where ThR is selected based on an adaptive thresholding of the 
d1_ppg data cumulative histogram (using a 10 s window) (Sun et al 2005). ThR was defined as 
the greater value bellow which 90% of the observations are found. Consequently, the d3_ppg 
local minima (d3_ppg_lmin) corresponding to the d1_ppg local maxima are also identified in 
order to detect the onset/offset of each PPG beat (see figure 3). These are identified as the peak 
with greater amplitude (d3_ppg_lmax) prior to the previously identified most relevant valley, 
the d3_ppg_lmax (Chan et al 2007).

Figure 2. Morphology and origin of the PPG pulse. On the left, a PPG pulse and cor-
respondent forward and reflected waves are presented. On the right, a sketch of the 
arterial system from the aorta/arm to the iliac arteries (Baruch et al 2011).
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2.3. Feature extraction

In order to detect PPG motion artifacts it is essential to extract a set of features capable of 
discriminating clean from corrupted PPG sections. These features were extracted resorting on 
the analysis of the time and period domain analysis of the PPG. In the time domain analysis, 
the main goal is to capture the changes in the morphological features of the PPG pulses. In the 
period domain, the characteristics of principal components of the period spectrum and their 
relationships are evaluated.

2.3.1. Time domain analysis. In clean PPG signals, the changes on the PPG pulse morphology 
are mainly caused by cardiovascular changes. Contrarily, PPG signals corrupted by motion 
artifacts present abnormal, erratic and ‘random’ characteristics which can be detected from 
the analysis of each pulse. To assess these changes, the morphology of the PPG pulses and 
their relationships with the neighboring pulses are analyzed, leading to the definition of the 
following characteristics: (1) pulse amplitude; (2) pulse length; (3) peak distance; (4) trough 
depth difference; (5) peak height difference; (6) pulse skewness; and (7) pulse kurtosis. Along 
with the morphological characteristics proposed by Sukor et al (2011) (pulse amplitude, pulse 
length and trough depth difference), four other characteristics are introduced in the present 
time domain analysis of PPG signal.

As illustrated in figure 4 the pulse amplitude is defined as the difference between the pulse 
peak height and its preceding trough depth (pulse onset), the pulse length is the time interval 
between the onset of two consecutive pulses and the peak distance is the time interval between 
maxima of two consecutive pulses. The difference between the peak height and peak depth of 
two consecutive pulses was also considered. As can be observed, these characteristics change 
drastically in the presence of motion artifacts, showing an erratic pattern. Contrarily, clean PPG 

Figure 3. Plot of PPG signal derivatives (order 1–3) and representation of the detected 
characteristic point for the detection of the onset of each individual PPG pulse.
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sections exhibit slow variations in the aforementioned characteristics, which are a result of a 
variety of cardiovascular and respiratory factors (e.g. vasomotion/compliance effects, changes 
in venous pooling related to heart rate/cardiac output variations, blood pressure changes and 
respiratory modulations) (Addison et al 2012). For example, the PPG pulse amplitude, which 
is related to changes in the intrathoracic pressure during respiration (Addison et al 2012), 
exhibits slow variations in the clean PPG sections when compared to the corrupted PPG sec-
tions, where it exhibits strong and inconsistent changes between pulses.

Since the shape of the PPG pulse is highly affected by motion artifacts it is expected to 
see random changes in the corrupted PPG pulses symmetry and ‘peakedness’, which were 
assessed using skewness (equation (4)) and kurtosis (equation (5)).

 
σ

=
−( )

Ch
E f x f x( ) ( )P P

6

3

3
(4)

 
σ

=
−( )

Ch
E f x f x( ) ( )P P

7

4

4
(5)

where f x( )P  is the PPG pulse, f x( )P  is the mean of f x( ) ,P  σ is the standard deviation of 
f x( ) ,P  and E(t) represents the expected value of the quantity t.

From the analysis of various types of PPG pulses, one observed that when motion artifacts 
are present, the aforementioned characteristics vary significantly. Contrarily, in clean PPG 
signals the PPG pulses are similar and therefore there is almost no variation in its characteris-
tics, since PPG height and regularity are related to blood volume and heart rate, respectively. 
These physiological properties are not expected to change abruptly between consecutive 
pulses. Hence, rather then evaluating the values of the proposed characteristics, as suggested 

Figure 4. Plot of a PPG signal with clean and motion artifact corrupted sections. Rep-
resentation of the PPG pulses morphological characteristics extracted during time do-
main analysis step.
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in (Sukor et al 2011), we aim to to capture their variations. The changes in the pulse charac-
teristics were evaluated using equation (6), resulting in the features F1 to F .7

 Δ= = − −F Ch Ch j Ch j( ) ( ) ( 1)i i i i (6)

where, Chi is the ith characteristic and j is the pulse (section) index.

2.3.2. Period domain analysis. To assess the period characteristics of the PPG signal, the 
discrete-time short time Fourier transform (STFT) was applied in the period domain. Let the 

+ −x x[ , ..., ]n n N 1  be the sequence defining the section of the PPG signal under analysis. For a 
sampling frequency SF, the frequency ‘bin’ k of the N-point STFT corresponds to the fre-
quency =f k SF N. / Hz,k  that is, = = =s f N k SF N k1 / /( . ) s / samples .k k  The STFT in the 
period domain, i.e. PD-STFT, defined as

 ∑= π

=

−

+
−X n s x w( ,   )   e

m

L

n m m
j m s

0

1

2 / (7)

is the expression for the DFT of the windowed sequence +x wn m m of the kth period bin. 
= … −s N1, 2, ,  1 samples is the range of possible periods in the aforementioned sequence.

To choose the size of the sequences (L) and the forward step (Δn), that is related to the 
section overlapping (L − Δn) one must take into account: (i) the stationary of the analyzed 
signal section; (ii) the tradeoff between the PD-STFT period and temporal resolution; (iii) the 
temporal resolution needed for the subsequent analysis.

Considering the aforementioned issues, the PD-STFT was applied using a rectangular-
shaped sliding window with approximately 3 times the fundamental period of the PPG signal 
(i.e. periods from 0 to approximately one and a half beat). The fundamental period was defined 
as the maximum of the period domain spectrum calculated from the first 5 s of each PPG sig-
nal. The overlap between consecutive windows was set to be approximately 85%. Thus, we 
assume the stationarity of the signal in the analyzed section  and guarantee an appropriate 
trade-off frequency resolution of the computed PD-STFT. Furthermore, by choosing 85% 
window overlap size we ensure that the analysis output has the reasonable temporal resolution 
(i.e. half of a beat) necessary for further analysis and motion artifact detection. Moreover, a 
good tradeoff between the computational complexity of the algorithm and the acquired tem-
poral resolution is also achieved. The fundamental period was extracted and updated based on 
the period analysis of small sections (5 s) of the PPG signal.

From the obtained period domain spectra characteristic features are extracted. This pro-
cedure resorts on the principle that, similarly to the morphology of the PPG signal, the 
PD-STFT also exhibits a regular shape representing the main features of the signal. From 
an analysis of the PD-STFT of various PPG classes (Dawber et al 1973) one observed that 
the PD-STFT of a clean PPG signal consists of three major spikes (P1, P2 and P3) with 
positioned at different locations and with different widths, heights and areas (figure 5). The 
most relevant spike corresponds to the fundamental period of the PPG signal, i.e., the length 
of the cardiac cycle (beat). The remaining spikes are thought to be associated with the loca-
tion and amplitude of the waves reflected from the periphery towards the aorta. Based on 
these assumptions, the power spectra of several uncorrupted and motion corrupted PPG 
sections were analyzed.

We observed that the power spectra of PPG sections corrupted with motion artifacts pre-
sented several random components that do not represent the fundamental characteristics of 
the underlying uncorrupted signal, resulting in random and significant changes in the period 
domain characteristics. In figure 6 it is possible to observe significant changes in the power, 
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location and length of the main components of the spectra between 20 s and 42 s, where the 
PPG signal is corrupted by motion artifacts.

To capture these variations, the PD-STFT of each PPG section was analyzed and the fol-
lowing characteristics were defined (see figure 5): (1) height (H); (2) location (L); (3) width 
(W); and (4) area (A). These characteristics are defined as …pCh H L W A: { , , , } ,1, ,4  while the 
three most relevant spikes and the remaining spectrum are defined as P1, P2, P3 and RS. The 
variations of P1,2,3 characteristics were evaluated by equation  (8), resulting in the features 

…F ,8, ,19  which are presented in figure 7.
 

Δ= = − − = … =… ( )F pCh pCh j pCh j i k( ) ( 1) ,  for  1, , 4 and  1, 2, 3i
P

i
P

i
P

8, ,19
k k k (8)

where, pChi is the ith period characteristic, k is the spike index and j is the pulse (section) 
index.

Additionally, the relationship between characteristics of the two most relevant spikes (P1 
and P2) was also assessed and was defined as follows:

 Δ= − = …… ( )F pCh pCh i,   1, , 4.i
P

i
P

20, ,23
1 2 (9)

An example of the rate of changes of the relationship between the two most relevant peaks 
characteristics, i.e. …F20, ,23 are presented in figure 8.

The area ( )pCh4  of the RS and its relationship with the sum of the three most relevant peaks 
area was also considered:

 Δ=
+ +

⎛

⎝
⎜

⎞

⎠
⎟F

pCh

pCh pCh pCh
.

RS

P P P25
4

4 4 4
1 2 3

(10)

An example of the rate of change of the aforementioned characteristics, i.e., Δ= ( )F Ch RS24 4  
and F ,25  is presented in figure 9.

Assuming that the main period characteristics of the PPG signal are represented by the 
most relevant components in the distribution and that the remaining components are the result 
of noise and motion artifacts, a model of the original distribution was created based on the 3 

Figure 5. Representation of the PPG signal period domain spectrum, its major compo-
nents (P1, P2 and P3) and the remaining spectrum (RS) for: (a) clean and (b) corrupted 
PPG sections.

(a) (b)
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Figure 6. Period domain spectrogram of the PPG signal showing clear changes in the 
spectra fundamental characteristics in the presence of motion artifacts.

Figure 7. Rate of changes of the three most relevant spikes’ characteristics (height,  location, 
width and area).



R Couceiro et al

2379

Physiol. Meas. 35 (2014) 2369

most relevant spikes, using Gaussian functions. The parameters of each Gaussian are deter-
mined based on the height ( )ChP1

i  and location ( )ChP2
i  of the detected spikes = …i( 1, , 3) . The 

spectrum model (X )m  was defined as:

 ∑= =
=

−
−( )

s pCh a
FWHM

X ( ) e , 
2 2ln2

m

i

Pi
s pCh

a Pi
Pi

1

3

1
2

Pi

Pi

2
2

2 (11)

where s is the period and FMHMPi is the full width at half maximum of the spike Pi and ln is 
the natural logarithm.

The comparison between the computed spectrum model X( )m  and the original spectrum 
X( )o  was then evaluated using Kullback–Leibler divergence measure (equation (12)).

 ∑= =
⎛
⎝
⎜

⎞
⎠
⎟F D X X X s

X s

X s
( ; ) ( ) ln

( )

( )
KL

m o

s

m
m

o26 (12)

where s is the period.
The rationale behind this comparison is that the increase in the spectrum’s complexity, as a 

result of the inclusion of random components, can be detected by an increase in the Kullback–
Leibler divergence between the original spectrum and the computed spectrum model (see 
figure 9—bottom).

2.4. Feature selection

In the feature selection step, the objective is to select a subset that contains the most relevant 
and least redundant features for the discrimination of motion artifacts. This enables the inter-
pretability of the classification model to be built upstream, and improves the efficiency clas-
sification model and its generalization capability.

Figure 8. Rate of change of the relationship between the characteristics of the two most 
relevant peaks (P1 and P2).
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In this paper the feature selection process was performed using the Normalized Mutual 
Information Feature Selection (NMIFS) method, proposed by Estevez at al. (2009), which is 
an enhancement to its predecessor methods, the Battiti’s MIFS (Battiti 1994), MIFS-U (Kwak 
and Chong-Ho 2002) and mRMR (Peng et al 2005). The main enhancement of the NMIFS 
method over its predecessors is the introduction of the Normalized Mutual Information (nMI) 
(equation (13)) as a measure of redundancy and the fact that there is no need for user defined 
parameters. The selection criterion used in the NMIFS method is presented in equation (14).

 =nMI F F
MI F F

H F H F
( ; )

( ; )

min { ( ) , ( ) }
i s

i se

i se
(13)

Fi and Fj are the features i and j of a set of features F, MI F F( , )i j  is the mutual information 

(MI) between features i and j and ∑=
∈

H F P F P F( ) ( ) log ( )
f

se

SE

se se

se

 is the entropy.

 ∑≗ −
∈

G I F nMI F FM (CL; )
1

SE
( ; )i

F

i

SE

se

se

(14)

where G is the NMIFS score, = FSE { } ,se  for = …se  1,  , SE  is the subset of selected features 
and CL is the classes variable.

2.5. Classification

A support vector machine (SVM) model has been adopted for the discrimination between 
motion artifacts and clean PPG. The classification process was performed using the algorithm 
C-support vector classification (C-SVC) algorithm (Chang and Lin 2011), with a radial basis 
function kernel.

Given the training vector ∈ = …Tv R i l, 1, , ,i n  and the correspondent classes label 
∈ −Cl { 1, 1} ,i  the C-SVC optimization problem requires the solution for:

Figure 9. Rate of change of characteristics 24 and 25, and feature 26.
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 ϕ ξ ξ+ ≥ − ≥Cl w Tv bsubject to ( ( ) ) 1   ,   1.i T i
i i (16)

Here, the function ϕ maps the training vectors Tvi into a higher dimensional space, and 
the cost, >C 0, is the penalty parameter for the error term. The radial basis function kernel, 

ϕ ϕ=K Tv Tv Tv Tv( , )   ( ) ( )i j i T j  is defined by:

 γ γ= − − >K Tv Tv Tv Tv( , ) exp ( ) , 0i j i j 2 (17)

where the parameter gamma γ( ) is a RBF kernel specific parameter.

3. Results and discussion

3.1. Experimental protocol

To evaluate the performance of the proposed algorithm, a data collection study was conducted 
aiming at the collection of photoplethysmograpic (PPG) signals from 15 volunteers: 8 healthy 
volunteers were enrolled at the Faculty of Sciences and Technology of the Coimbra University 
and 7 patients with cardiovascular diseases (CVD) were enrolled at the cardiovascular depart-
ment infirmary of the Hospital Center of Coimbra University. The biometric characteristics of 
the 15 subjects involved in the present study are summarized in table 1.

The PPG waveform was recorded from the tip of the index finger using an infrared transmis-
sion finger probe with a HP-CMS monitor and was digitized at a sampling frequency of 125 Hz.

In order to conduct a wide variety of motion artifact patterns, the subjects were asked 
to execute two runs of eleven different types of hand and body movements (see figure 10), 
resulting in 22 records of 60 s for each subject. In order to correctly and timely execute the 
movements, each volunteer was guided by a slideshow, which showed the expected movement 
pattern, the next movement and the time to the next movement. Additionally, a trained techni-
cian also assisted the volunteers during the whole process.

The volunteers were asked to perform each movement in the 20–40 s. time interval of each 
run. A technician annotated each record in order to identify the exact time interval where the 
motion artifacts occurred.

The study was authorized by the ethical committee of the Centro Hospitalar de Coimbra in 
2010 under the protocol ‘Assessment of cardiac function using heart sounds, ICG and PPG’.

3.2. Feature selection

The NMIFS algorithm was applied to the whole database containing the records of both 
healthy and CVD volunteers. From the analysis of the computed NMIFS scores, the 8 most 

Table 1. Volunteers’ characteristics (average ± standard deviation).

Healthy CVD

Age 27.4  ±  3.7 62    ±  13.5
Weight 72.5  ±  8 87.9  ±  21.4
BMI 24.4  ±  2.9 31.5  ±   6.9
Male/female 8/0 5/2
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Figure 10. Movements performed by the volunteers. (0) No movement; (1) disturbance 
of the PPG probe, causing variations in the contact point between fingertip and probe; 
(2) gently bending of the index finger; (3) repeated movement of the wrist left and right; 
(4) shaking the wrist; (5) repeated movement of the epsilateral arm in the horizontal 
plane; (6) repeated movement of the epsilateral arm in the vertical plane; (7) lifting and 
lowering a book with both hands; (8) repeated tapping of the table with the index finger; 
(9) repeated raising and lowering of the arm; (10) repeated sitting down and standing up;  
(11) slow walking in a straight line.

Figure 11. NMIFS and relevance scores for the 26 features extracted from the time 
…( )F1, ,7  and period …( )F8, ,26  domain analysis.
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relevant features were selected, corresponding to 4 features from the time domain and 4 fea-
tures from the period domain. From the time domain, the selected features are pulse amplitude 
F( ) ,1  trough depth difference F( ) ,4  pulse skewness F( )6  and pulse kurtosis F( ) .7  In the period 

domain, the location of the 2nd and 3rd major spikes (F12 and F13), the length of the 3rd major 
spike F( )16  and relationship of the major spikes area with the remaining spectrum F( )25  were 
selected. The two most relevant selected features derive from the period domain analysis, 
showing its importance in the proposed methodology.

In figure 11 we present the scores achieved by the NMIFS algorithm as well as the rel-
evance scores ( I CL FM ( ; ) ,i  equation (14)).

3.3. Classification

The 176 recorded signals were analyzed and each section was classified using the proposed 
methodology and compared to the manually annotated classification. The performance of the 
algorithm was evaluated for the global, healthy and CVD dataset, as well as to each of the 11 
motion sources.

In order to generate a classification model that can accurately predict the testing data 
and to avoid the over fitting problem, it is essential to find the parameters gamma γ( ) and 
cost C( ) that best suit the present classification problem. Therefore, a grid-search method 
using 10-fold cross-validation was used for this proposal. The global dataset was randomly 
partitioned into 10 equal size subsets. From the 10 subsets, 9 subsets were used for training 
and the remaining subset was used for testing. The cross-validation process was repeated 
10 times with each of the k subsets used exactly once as the validation data and its accuracy 
is the average accuracy in each testing step. The cross-validation process was repeated sev-
eral times with groups of exponentially growing gamma/cost pairs ( = …− −C 2 , 2 , , 25 3 15 and 
γ = …− −2 , 2 , , 215 13 9). The parameters that best fit the current classification problem were 
defined as: =C    25.33 and γ = 2 .6.35

The validation of the proposed methodology was performed using a 10-fold cross-vali-
dation scheme. In this process, the global dataset was randomly partitioned into 10 equally 
sized subsets with the same percentage of samples from each patient and each motion artifact 
source. Nine subsets were used for training the classification model, while the remaining sub-
set was used for validation. The data of the validation subset corresponding to each context 
was used to validate the classification model regarding each subject group and motion arti-
facts’ source. This process was repeated for each of the 10 subsets. The 10-fold cross valida-
tion procedure was conducted 20 times. The performance of the proposed methodology was 
defined by the average ± standard deviation (over the 20 repetitions) of the following metrics: 
sensitivity (SE) and specificity (SP), and accuracy (ACC).

Table 2 summaries our results. The proposed methodology achieved a good performance 
in the classification of both corrupted and clean PPG sections, with an overall accuracy 
of 88.5%, which corresponds to a sensitivity of 84.3% and a specificity of 91.5% during 

Table 2. Results achieved by the proposed methodology in Global, healthy and CVD 
subsets.

Context

Performance metric (avg ± std)

SE SP ACC

Global 84.3  ±  0.8 91.5  ±  0.5 88.5  ±  0.4
Healthy 78.4  ±  1.2 94.4  ±  0.6 87.5  ±  0.6
CVD 91  ±  0.8 88.4  ±  0.9 89.5  ±  0.6
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validation. Looking into more detail in the specific subject groups, for healthy subjects the 
accuracy decreased to 87.5%, whereas for the CVD patients an increase can be observed to 
89.5%. However, while in the CVD dataset the proposed methodology is able to discriminate 
corrupted PPG sections  from the clean ones with high sensitivity (91.0%) and specificity 
(88.4%), in the healthy dataset, there is a significant decrease in sensitivity (78.4%). These 
results show that the proposed methodology is able to detect motion artifacts more accu-
rately in CVD volunteers when compared to healthy volunteers. One possible reason for this 
difference in the presented results relies on the different characteristics of the PPG signal 
within healthy and CVD subjects. Due to ageing and the appearance of cardiovascular com-
plications, the compliance of the systemic vascular wall decreases (i.e. arterial stiffening), 
leading to the disappearance of the dicrotic notch and therefore changing the morphologi-
cal complexity of the PPG waveform in the CVD volunteers. Additionally, the appearance 
of abnormal cardiovascular events (e.g. arrhythmias) in CVD volunteers also affects the 
period characteristics of the PPG waveform, leading to the misclassification of clean PPG 
sections and reducing the model specificity in the subject group. Since the extracted features 
mainly reflect the changes in these characteristics, it is expectable to have variations in the 
extracted features discrimination capability and therefore different optimal feature space for 
healthy and CVD subsets. The presented results suggest that the discrimination capability 
of the selected features is dependent on the analyzed context, i.e. the analyzed volunteer 
subset, affecting the proposed methodology performance within healthy and CVD subjects, 
as shown in table 2.

It is not possible to perform a fair comparison between the proposed algorithm and 
state of the art, since different datasets were adopted, resorting on dissimilar populations 
and protocols. However, a comparison of algorithms performance within the Healthy 

Table 3. Comparison of the results achieved by the proposed method and the methods 
proposed in the literature (Sukor et al 2011, Krishnan et al 2008) in healthy volunteers.

Healthy

Performance metric (avg ± std)

SE SP ACC

Proposed method 78.4  ±    1.2 94.4  ±     0.6 87.5  ±  0.6
Sukor et al (2011) 89      ±  10 77      ±  19 83      ±  11
Krishnan et al (2008) 91/97 94/80 n.d.

Table 4. Results achieved by the proposed methodology for each of the 11 motion 
artifacts’ sources.

Context

Performance metric (avg ± std)

SE SP ACC

Movement 1 84.7  ±  3 92.6  ±  1.6 89.7  ±  1.5
Movement 2 90     ±  1.9 91.7  ±  1.8 91    ±  1.3
Movement 3 72.7  ±  3 93.5  ±  1.4 85.1  ±  1.3
Movement 4 83.9  ±  2.6 92.7  ±  1.7 89.3  ±  1.5
Movement 5 81.6  ±  2.9 91.9  ±  1.7 87.9  ±  1.6
Movement 6 85.5  ±  2.6 91.5  ±  1.5 89    ±  1.5
Movement 7 88.1  ±  2.4 90.6  ±  1.9 89.4  ±  1.5
Movement 8 77.5  ±  2.7 89.8  ±  1.9 84.6  ±  1.6
Movement 9 89.6  ±  2 92.2  ±  1.7 91    ±  1.2
Movement 10 87.6  ±  2.1 89.3  ±  1.8 88.5  ±  1.4
Movement 11 83.9  ±  2.4 90.9  ±  2.1 88    ±  1.5
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population can still be done. From table 3 we present a comparison of the results achieved 
by the current algorithm with the methods presented in literature. On the one hand, it is 
possible to observe that the specificity and accuracy of the current algorithm are greater 
(SP: +17.4% and ACC: +4.5%) compared to the algorithm presented by Sukor et al (2011). 
Contrarily, the sensitivity of the current algorithm remains lower than the later method 
(SE: −10.6%). Nonetheless, the algorithm proposed in (Sukor et al 2011) exhibits a exces-
sive uncertainty in the results, revealed by the high standard deviation (from 10% to 19%) 
of the used metrics. On the other hand, one can observe that the current algorithm was not 
able to outperform the one proposed by Krishnan et al (2008), with a much lower sensitiv-
ity (SE: −12.6%) and a marginally higher specificity (SP: +0.4). The author did not report 
the accuracy of the proposed algorithm and therefore we were not able to compare both 
algorithms using this metric.

From table 4 it can be observed that the majority of the movement artifacts are identified 
with accuracy over 88%. However, there are two exceptions for the 3rd and 8th movement 
artifacts where a decrease in the detection accuracy has been observed (85.1% and 84.6%, 
respectively). This is a result of an evident increase of the algorithm’s inability to detect prop-
erly the corrupted PPG sections, shown by the decrease in sensitivity to 72.7 and 77.5%, 
respectively. On the other hand, the algorithm’s specificity, that is, the ability to detect non-
corrupted PPG sections is still high.

The performance decrease for the 3rd and 8th movement artifacts is possibly associated 
with how the volunteers perform the requested movements. Two possible reasons are the: i) 
Low corruption of PPG data resultant from the incorrect execution of the performed move-
ment and; ii) Increase in the periodicity of the performed movements.

During the execution of the 3rd movement, (see figure 10) several volunteers gently lifted 
the wrist/probe, causing no friction between the PPG probe and wrist with the table, and there-
fore resulting in low corruption of PPG data. Additionally, during the execution of movement 
8, it was observed that several volunteers performed this task in a periodic fashion (contrarily 
to what is expected in real scenarios), leading to contamination of the PPG data with peri-
odic artifacts. Since the present methodology is based on the analysis of the changes in the 
period components of the PPG data, artifacts with an intrinsic periodicity typically cannot be 

Figure 12. Examples of PPG signals when a performance decrease in the proposed 
methodology was observed. (a) Volunteer 4/Record 5/Movement 3. (b) Volunteer 3/
Run 15/Movement 8.

(a) (b)
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detected. In figure 12, we present two examples where the aforementioned problems occurred 
and consequently a decrease the proposed algorithm performance has been observed.

4. Conclusion

In the current paper a novel methodology for the detection of motion artifacts in photople-
thysmographic signals has been proposed. Our approach is based on the analysis of the time 
and period domain analysis of the PPG leading to the extraction of a total of 26 features. 
Contrarily to clean PPG signals, were changes on the PPG pulse morphology are mainly 
caused by cardiovascular changes, corrupted PPG signals show abnormal, erratic and ‘ran-
dom’ pulse characteristics. To assess these, the morphology of the PPG pulses and their 
relationships with neighboring pulses was analyzed contributing to the extraction of eight 
time domain 8 features. Features extracted from the period domain resorts on the principle 
that, the PD-STFT also exhibits a regular shape representing the main features of the signal 
similar to the morphology of the PPG signal. From the period spectra analysis, it was found 
that a clean PPG signal consists of three major spikes with different locations, lengths and 
amplitudes, being the most relevant spike a result of the fundamental period of the PPG 
signal, and the remaining spikes associated to location and amplitude of the waves reflected 
from the periphery towards the aorta. Moreover one observed that in corrupted sections of 
the PPG signal, several random components that do not represent the fundamental charac-
teristics of the underlying uncorrupted signal in the presence of motion artifacts are present, 
leading to random and significant changes in the period domain characteristics. To capture 
these changes, 18 features were extracted from the analysis of the main characteristics of the 
period domain spectra of the PPG signal.

In order increase the classification model generalization capability and interpretability, the 
extracted features were ranked using the NMIFS algorithm and the 8 most relevant features 
were selected, corresponding to 4 features from the time domain (pulse amplitude, trough 
depth difference, pulse skewness and pulse kurtosis) and 4 features from the period domain 
(2nd and 3rd major spikes, the length of the 3rd major spike and relationship of the major 
spikes area with the area remaining spectrum).

The discrimination between motion artifacts and clean PPG sections was performed using 
C-Support Vector Classification algorithm (Chang and Lin 2011), with a radial basis function 
kernel. The identification of the most suitable gamma γ( ) and cost C( ) parameters was per-
formed using a 10-fold cross-validation grid-search method.

The proposed methodology for motion artifacts’ detection was validated on 8 healthy vol-
unteers enrolled a the Faculty of Sciences and Technology of the Coimbra University and 7 
CVD patients enrolled at the cardiovascular department infirmary of the Hospital Center of 
Coimbra University. A 10-fold cross-validation scheme was repeated 20 times with the fol-
lowing performance metrics: sensitivity (SE), specificity (SP), and accuracy (ACC).

The results achieved by the current algorithm in the global dataset (SE: 84.3% and SP: 
91.5%) suggest that the characteristics of period components of the PPG signal can be used 
as discriminative features for motion artifact detection. Additionally, the results achieve for 
each of the volunteers subsets, show that the proposed methodology is able to detect motion 
artifacts more accurately in CVD volunteers (SE: 91% and SP: 88.4%) when compared to 
healthy volunteers (SE: 78.4% SP: 94.4%), suggesting a different discrimination capability of 
both time and period domain features for each of the volunteers subsets. Finally, the results 
achieved for each of the motion artifact sources show that the proposed methodology is able 
to detect motion artifacts with high accuracy regardless the performed movement.
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